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Rate of Convergence of 
Shepard's Global Interpolation Formula 

By Reinhard Farwig 

Abstract. Given any data points xl, . . ., x,, in RW and values f(x)... f(x") of a function f, 
Shepard's global interpolation formula reads as follows: 

Sof (x) =Ef (xi) Wi (X, Wi (X = I X - Xi I -P/ElX - xjl |P. 
i I 

where | I denotes the Euclidean norm in WR. This interpolation scheme is stable, but if p > 1, 
the gradient of the interpolating function vanishes in all data points. The interpolation 
operator Spq is defined by replacing the values f(xi) in Spf by Taylor polynomials of f of 
degree q E= N. In this paper, we investigate the approximating power of Spq for all values of p, 
q and s. 

1. Introduction. In [12] D. Shepard introduced an interpolation scheme which is 
easily programmable and whose interpolating function can be written down ex- 
plicitly. Given any arbitrarily spaced points xl, . . ., x, E RS and values 
f(x1), . . . , f(x,) of a function f, the first version of Shepard's interpolation formula 
is given by 

n 

Sf(x) = E f(xi)wi(x) 
i=1 

with basis functions 

WiW 
Ix - i- 

i 
j( ) 

- 
-xl -P 

Here p > 0, and I I may denote any norm in RS, but for reasons of differentiability 
it is natural to use the Euclidean norm. The basis functions are not differentiable at 
the data points if p < 1; otherwise, at least the first derivatives vanish. Generally, 
the parameter p is chosen to equal 2 so that, in addition, the basis functions are 
rational and infinitely differentiable. For a qualitative discussion of the parameter p, 
see Barnhill, Dube and Little [3], Gordon and Wixom [5], Lancaster and Salkauskas 
[7] and Poeppelmeier [10]. Since 

wi(xj) = 8ij, wi(x) > 0 and wi(x) = 1, 

the linear interpolation operator SO is stable in the sense that 
min f(xi) < Soi(x) < maxf(xi). 
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D. J. Newman and T. J. Rivlin [9] show that, if p = 2, then SO is optimal in a 
certain sense among all 'universally' stable rational interpolation schemes. But the 
approximating power of a stable interpolation operator cannot exceed nl/S, as is 
shown in Section 3. 

If p> 1, the interpolating function SOf has flat spots in the neighborhood of all 
data points. This drawback can be avoided by using Taylor polynomials of f of 
degree q instead of the values f(x), . . , f(xJ), if all partial derivatives Dft(xi) of f 
up to degree q, or approximations to them, are known: 

nq 1 
S)pf(x) = E E D'f(xi)(x -xi)wi W) 

i=1 lvl<q 

where v = (d,.. ., ) denotes a multi-index and lI = v 1 + + Is. If q > 1, Spq is 
no longer stable, but Spqf will approximate f (and its derivatives) much better than 
Sf does. Generalizations of Shepard's global interpolation formula are described by 
Barnhill [2], McLain [6], Little [8], Schumaker [11] and in [3], [7] and [10]. 

In applications, the global character of Shepard's interpolation formula is often 
undesirable. Further, the evaluation of Sp'f(x) requires a considerable amount of 
work. These disadvantages are avoided by using local versions of Shepard's formula. 
There the basic functions have 'small' compact support which may even depend on 
the local distribution of data points (see [2], [11] and [12]). Bash-Ayan [1] and 
Franke [4] tested Shepard's global formula and several local versions and compared 
them to other multivariate interpolation schemes. 

If the n data points are distributed in a homogeneous way throughout a given 
domain, and if n -- o, then Spf will converge to the given function f. In [9], the 
rate of convergence of S2 is given in the univariate case. In this paper, we investigate 
the approximating power of Sp for all p and q and in every dimension s. Section 2 
shows that p - s = q + 1 or p - s > q + 1 is a good choice of the parameter p if q 
is given. In Section 3, we prove (cf. [9], if s = 1, q = 0, p = 2) that the results of our 
main theorem, Theorem 2.3, cannot be improved for any set of data points. 

2. Approximating Power of Shepard's Global Interpolation Formula. In the s- 
dimensional space Rs let I I denote the Euclidean norm, 11 lthe maximum norm, 
and let Br(y) denote the closed cube {x E RS; lix - YIi < r} with center y and 
radius r. We use standard multi-index notation. In particular, given any multi-index 
v = (v1,..., s) E Ns, 1ig denotes the sum P1 + * + Ps and not the Euclidean norm 
of the vector P. 

Let f be a function sufficiently smooth in a domain A of RS such that the 
function values f(xi) and all partial derivatives D~f(xj) up to some order q E N 
(PI~ < q) are known in n pairwise distinct data points xl, ..., x. Then, if p > 0, 

Shepard's interpolation operator SPJ is defined as 
n1 

(2.1) SPgf(x)= PE D~f(xi)(x-xi)'wi(x) 
i= lvl<q 

with the i th basis function 

(2.2) Wi(X) n ix - X1 -P Hk*ilX - Xk1P 

EjiX- Xi __1Hj= l k~iX - Xklp' 



SHEPARD'S GLOBAL INTERPOLATION FORMULA 579 

Note that 
n 

Wi(xi) = Sip, Wi(x) > 0, E wi(x) = 1, 
i-1 

and that wi(x) is infinitely differentiable in RS except in the data points where all 
partial derivatives up to order p - 1 (p E N) or [p] (p 0 N) exist and vanish. 
Thus, if q < p - 1 or q < [p], the interpolating function Spqf is at least q-times 
continuously differentiable and 

D"Spqf(xi) = D~f(xi) (IvI q, i = n). 

Assume that the domain A is compact and satisfies two conditions of regularity: 

There is a number y > 1 such that any two points x and y in 
(Al) A are joined by a rectifiable curve F in A with length 

11F1 < ylx - Al 

(A2) There is a compact cone K such that for every x E A there is 
a cone K(x) C A with vertex x and congruent with K. 

Note that the cone K may be defined as K= {Xy; y E Br1(z), A > 0) n Br2(O) 

(r1 > 0, r2 > 0, 0 1 Br1(z)) and that the number y in (Al) may be assumed to be an 
integer. The condition (Al) implies connectedness and excludes domains with too 
thin cusps directed into the interior A of A, while the cone property (A2) does not 
admit domains with too thin cusps directed outwards and guarantees that the closure 
of A equals A. 

Next, we discuss some consequences of the condition (Al). According to H. 
Whitney [13], a function f: A -. R is said to be of class Cq in A if and only if 
functions D~f(x) and R,(x;y) (IvI < q) exist in A such that Taylor's formula holds 
in the following sense (x, y e A, IvI < q) 

(2.3) D f (x) = E 
1 

Dv+f (y)(x - y)' + Rv(x;y). 
J11q< q- Jv 

A 

The remainder terms R,(x;y) shall have the following property: Given any point 
z e A and any E > 0 there is a 8 > 0 such that 

(2.4) IR,(x;y)I< E|x -Y"q'11 foreveryx, y EA, Ix - zI 8, Y - zI 8. 

(2.3) and (2.4) imply that f is continuous in A and, if q > 1, that f has continuous 
partial derivatives up to order q in the interior of A satisfying 

Dvf(x) = a f) v- v q, x Ex A. 
XI XS 

A function f is said to be of class Cq"l in A if and only if f is of class Cq in A and, 
additionally, the partial derivatives D~f of f of order q (IvI = q) are Lipschitz-con- 
tinuous in A. In this case, the seminorm I q i is defined as 

If fq = suP{ ID~f(x) -Df(x2)( 1 
;x x2 e A, x#l X2, IvI = q} 

The results of H. Whitney [13] yield important estimates of the remainder terms 
R(x; y). 
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LEMMA 2.1. Let A satisfy (Al) and let f be of class C"sl in A. Then, for every x, 
y e A, 

JR(x;y) I < c q-p1y ''X q-yv+lf 

where cp = sP/(p - 1)! (p > O) or cp = 1 (p = 0). 

If f is assumed to be only continuous in A, we will use its modulus of continuity 

Of 

wf (8) = sup{I f (x) - f (y) I; x, y E A, I x -yI 8) 

LEMMA 2.2. Let A satisfy (Al), and let f E C0(A). Then, for arbitrary positive 
numbers 0 < E < 8, 

Wf(8) < 2y-cf(E)- 

Proof. Let m be the integer defined by me < 8 < (m + 1)E. Then, it is sufficient 
to prove that cf((m + 1)E) < y(m + 1)@f(E) because m + 1 < 28/E. Let x, y e A 
with Ix - yI < (m + 1)E and let F be a rectifiable curve in A joining x and y with 
length 1l < ylx - yl. Parameterizing F by x(s) E C[0[, IFl], where s denotes the 
length of the part of F between x and x(s), we partition the interval [0, IFl] into 
y(m + 1) consecutive parts [Si-1, si] of length Isi - si-11 < 8. Noting that x = x(O) 
and y = x(IIl), we get 

y(m +1) 

If(x) -f(y)1< E f(x(si)) -f(x(si-))l y(m + l)@f(8). 0 
i=1 

Let X be a set of n pairwise distinct data points xl,.. ., x, in A. We set 

r = inf{ p > 0; for every x E A, B. (x ) contains at least one element of X} 

and 

M = sup card(Br(y) n X). 
y 

Analogously to the half-open unit interval (0,1], the half-open unit cube in Rs is 
defined as (0, u]S. Multiplying by 2r and shifting, we get the half-open cube Qr(X) 

with center x and radius r (with respect to the maximum norm). The finiteness of X 
implies for every x E A that Br(X) and Qr(X), if additionally Qr(X) c A, contain at 
least one element of X. Our main theorem, Theorem 2.3, yields an estimate of 
IISpqf-f Am the supremum of Spqf - f in A. 

THEOREM 2.3. Let the compact domain A satisfy condition (Al) and, if p = s, also 
(A2) and let X = {x1.. 9 Xn} be a set of n data points. Iff is of class C ql" in A, then 

(2.5) IISO - f fIA < CY qMf Iq Epq(r), 
where 

(iogr,11 p S, 

(2.6) ep(r)= rP slogr|, p-s q q +l, 

rq+lgr p-s > q + 1, 
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and C is a positive constant independent of f, y and X. If fE C?(A), then 

(2.7) |Spf-f 11A s CyMwf (ep(r)). 
Proof. Define 

(2.8) spq(x) = n- P In111X - Xl- 

If f 8 C?(A), then by Lemma 2.2 (E(r) = Eo(r)) 

J(SqPf f )(X) I -((r))wi(x) + ? fx -x wix 
i i 

Jx-xjJ<E(r) Jx-xjJ>E(r) 

< wJe(r))(l + E2- Ix - xilwi(x)) 

f wJ(E(r))y(1 + ers 

If f e Cql(A), then by (2.3) and Lemma 2.1, 

|(S~f-f)()|< ?IRO X;i) IWi(X) <, Cqyqlf |SqlpX). 

Thus, it remains to be shown that for fixed x e A, x # xi (1 < i < n), 
(2.9) sp(x) < MCeq(r) 

with a positive constant C independent of x and X. 
In order to prove (2.9) we need a disjoint covering of A by half-open cubes. Let 

Tj = Tj ,(x) be the half-open annulus with center x and radius 2rj defined by 

TJ= U Qr(x+2rk). 
kEZs 
lk Il-j 

Note that To = Qr(x) and that 

A C U T1 with N=[ 2) + 1, 
j=O 

where d(A) > 0 denotes the diameter sup{Ily - zil; y, z 8 A) of A. Evidently, the 
number of half-open cubes Qr( ) contained in Tj lies between 2s(2j - 1)s-1 and 
2s(2j + 1)s1, thus 

card(X n Tjr(X)) < 2sM(2j + 1)s 1 (1 < j < N). 

Further, note that 

(2] - 1)r < 11 x-xi 11 < (2j + 1)r for every xi e X n Tjr(X). 
If (A2) is satisfied, we get a lower bound on card(X n Tj). For there are a positive 
number ro and positive integers jo and jr > max(ro/r, jo) (each of them indepen- 
dent of x) such that the number of half-open cubes Qr(X + 2rk) with Ilk I = j 
contained in A n K(x) is bounded below by [j/joSl for every jo < j < jr, r < ro. 
Thus, 

card(X n Tj>r(X)) 
> [A] for every jo 6 j < j,, r < rO 

where jr > max( r 
' i) 
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Note that, if A is not empty and if M is bounded as n - oo, r -- 0, then 
n = card X is of exact order r-s. Defining the point xio E X by 

lix - xiol| = min lix - xJ19 

we get 

N 

Sq(X)4l- l < 11 11X _Xijjq+1-p + E l~lq+l-p) 
sPx JJ 

li 
-Xjio 

lx E E lix - )i Xi eTo j=l xiE=Tj 

(2.10) N 

< Mrq+l ( + C E js-p+q 
j=l 

Case 1 (p > s). If either p - s > q + 1 or p - s = q + 1 or p - s < q + 1, then 
EjS-p+q is either bounded or diverges with O(log N) = O(llog ri) or diverges with 
O(Ns-P+q+) - O(rP-s-q-1). Thus (2.10) yields (2.9). 

Case 2 (p = s). In this case we must examine the denominator of spq(x) more 
carefully. Since jo1/] = O(log ir) = O(llog r ) 

N Jr _ , s-l 

E E lix -xi1 > E lix - xiil + E J ((2j + 1)r) P 
j=O xieT0 Xi e To i=jo A 

~~~~ 
XE ||x-xill + plogr0. 
xi GTO 

Using the inequality 

Ealb < E bi (ai 0> bi > 0), 

we get 

N 
Sq(X) < E liX - 111 + grl E liX - 

xiETTo logrl j=1 xi7T 

1 

N Mrq+1(1 + C2 jq 

Finally, since 

N 

E jq= O(Nq+?l) - (r-q-1) 
j=1 

this last estimate yields (2.9). 0 

THEOREM 2.4. Assume (Al) and let f be of class C"q1 in A, q > 1 and p > s + 1. 
Then, the first partial derivatives of Spqf converge to f uniformly in A as r -+ 0. More 
precisely, if ,u denotes a multi-index with JILI = 1, then 

efq ( r) 
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Proof. Given any x E A, 

DISpqf (x) - DLf(x) = E AD^+f(xi)(x - xe)" - D!Lf(x))wi(x) 
ijvjvq-1 

-E Ro(x;xi)DLwi(x) 

- -~ R,(x;xi)wi(x) -E RO(x;xi)D'Lwi(x). 

Since 

(X- ) - x-j Xi, 
2 

1 j(x - x1)gIx - j 
2 

DI~ ( ( X-X )1x - x-X -P 2 I x E ( IX - P2 

Lemma 2.1 yields the estimate 

ID(Spqf -f)(x) | < CIf lq,iyq(sq-l(x) + s,((x)sp2(x)). 

Here s -2(x) is defined by (2.8) with q = -2, and x # xi (1 < i < n). We also have 

S;-2(X) = 
EJx- il- 

Eill X - Xi 11 

l M(1 + 
CiEjsm-2) MC lix 

- 
xioll j=1 lix~~~ xioII 

Looking at the proof of the estimate (2.9) (see (2.10)), we have 

SPq(X)SP-2(x) < epq r) 
r 

Since for arbitrary values of p, s and q 

Spq-l(X) < C1Meq- 1(r) < C2M r 

the theorem is proved. 0 
Remark 2.5. A similar result holds for higher derivatives: Given any multi-index ,u 

with luI < q andp > s + IuLI, 

IDi(Sp'f-f)|11 < CrYqMItl fJqj 

Generally, the derivatives of f in the data points are not known. The next theorem 
guarantees the same rate of convergence if all derivatives needed are approximated 
to the right order. 

COROLLARY 2.6. Assume (Al), let f be of class Cqj in A and let dvf(xi) be 
approximations to Dvf(xi), IvI < q, xi E X, such that 

d f (xi) = D~f(xi) + O(rq+l-jij), II < q, r 0. 

If Spq denotes the interpolation operator 

Spf(x) = E E v- d"f(xi)(x - xi)'wi(x)g 
i ljvlq 
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then 

OgSPJf f JA = M _ O(eq(r)), r -O 0. 

Proof. It suffices to consider Spqf - Spqf. Now 

(Spqf- Spqf)(x) < Co E rq+l-PElx - x4II''wi(x) 
1PIvq i 

< C1 rq+1 -1^151^1 W 
I~vIq 

Since by the definition (2.8) sp;(x) - 1, let e;1(r) _ 1, apply (2.9) and note that for 
all lvi < q, rq+1?-llee1H-l(r) = O(ep(r)). a 

Remark 2.7. Analogously to Remark 2.5, 

|DIL( pqf - ) |= MILI'. O(Eq(r)/rI'L,) r O . D~(S,~'f-f)A r P0 

3. Negative Results. Theorem 2.3 gives no information if p < s. In this case 

Shepard's formula fails to converge in the sense that there is no function ep(r) such 
that ep(r) -O 0 as r -O 0 and such that (2.5) holds. Theorem 3.2 deals with this case 
and, further, shows that Theorem 2.3 cannot be improved. In the following we will 
use the test functions 

.q(X) = l X _ Y Iq+ 1 0 O), 

some properties of which are listed in the next lemma. 

LEMMA 3.1. The function gq is of class Cq1 in Rs. If q = 0, then Wg(8) = 8 

(8 > 0). If q > 1, then all partial derivatives of g q exist at every point x # y, and up 
to order q + 1 they are continuous and bounded functions in RS \ { y }. Further, 

E 1 D gyq(x)(y - xY) = (-1) q _-Y q?1 

Proof. Let us only prove the last identity for the case y = 0. Using polar 
coordinates with r = r(x) = lxi it is easily seen that for every j = 1, . .. , q, 

1 a 1 S a1xi, ax_ 
j! ari 0 j! il.1ij=1 axil ... axij r ar 

ryIE !D Pgq(X)X,, v! 0 

Now insert this identity into Taylor's formula for p(r) - q = gj(X): 

? =p(?) =E .-pli)(r)(-r)j + (-r)ql O 
j=O J 

THEOREM 3.2. Let the compact domain A c [0, 1]5 satisfy the cone property (A2), let 
X(n) denote an arbitrary set of n pairwise distinct data points { xl,. . ., xI } in A and 
let r = n-1/s. Then, there is a positive constant c dependent only on p, s, q and A with 
the following property: given any set X(n) (n sufficiently large) there is a function g of 
class Cq'1 in A such that 

(3.1) lSpqg - g A ?> C1 g |qle(r). 
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Here Eq(r) is defined by (2.6) if p > s and eq(r) = 1 if p < s. Analogously, there is a 
function g E C0(A) such that 

(3.2) |SPg - g ||A > cwog(EP(r)). 
Proof. The function g will be the test function gq(x) = Ix - yjq?1, where the 

choice of the point y e A depends on the set X(n). Since IgIqi is bounded 
independently of y E A, Lemma 3.1 implies that 

tSq~ygq I > ISgq(y) IE I Y _XiI llWi(Y) 

> cSpq(y) > Col gyqq AspY) 

with positive constants co and cl. Analogously, for gy E C?(A), 

SP09Y - 9Y IIA > csP (y) = cogy(SP (y))- 

Thus, it suffices to show the existence of a positive constant c such that for every set 
X(n) (n sufficiently large) there is a point y E A \ X(n) satisfying the inequality 

spq(y) >_ c~pq(r). 

Let N(n) be an increasing function 

N: N-*N with N(n)-4 oo as n oo, 

which will be defined later. By virtue of the transformation x -* N(n)x it remains 
to show that 

(3 *3) Spq( y) > CNq+ Epq( r ), 

where now y and the data points xl, ... , xn range through the set AN = N(n)A C 

[0, N(n)Is. If k E Ns, let Q(k) denote the half-open cube of radius 2 and center k 
and note that 

ANC U Q(k). 
k eNs 

0<11klj<N 

Following the ideas of D. J. Newman and T. J. Rivlin [9] for the univariate case, we 
construct a point y E AN\ X(n) suitable for our purpose. Let 

m = card(Q(l) n X(n)) = mn card(Q(k) n X(n)). 
Q(k)CAN 

Since the number of half-open cubes Q(k) c AN increases asymptotically like 
/L(AN) = pu(A)NS, as N oo (/L(A) denotes the Lebesgue measure of A and is 
positive because of (A2)), 

n 
(3.4) m6 IA)N' (N sufficiently large). 

Assume m > 1, the trivial case m = 0 being considered later. Let 

T= {x E Q(l); || x - ,1I< |x-xiI> *(2m) l/s for everyxi E X(n)} 

and note that 

(3.5) u(T) > (1)S - m(2(2m)l/s)s = 1/2s+l. 
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In order to simplify the notation, define 

01(y) = E IIY - xij and 02(Y) = E Y- XiIq1P 
Xi G Q(1) xi4 Q ? 

Case 1 (p > s). Since 

dTu(x) x - xiI < mf d~u(x)IxI 

= fm 1- 
drr = cm (4(2m)11s)P 

c being a positive constant arising from the introduction of polar coordinates, (3.5) 
guarantees the existence of a point y E T such that 

(3.6) u1(y) < cmP/S (p > s). 

Case 2 (p = s). Since Ix - xil < foreveryx E Tand xi c Q(l), 

fTd(x) E Ix-xil P < mf du(x)Ix IP T xie Q Q() (2m)lF/ l s<# 

~ S dr 
= cJMl dr < c2m(1 + logim). 

(2m )-11s14 r 

Thus, (3.5) yields the existence of a point y E T such that 

(3.7) u1(y) < cm(l + logm) (p = S). 

Case 3 (p < s). 

du(x) Ix - xiI P < mcif drrs-P-1 =Mc2, 
T G Q(l) 

thus there is a point y E T such that 

(3.8) ui(y) < cm (p <s). 

If m = 0, the inequalities (3.6), (3.7) and (3.8) obviously hold for every y c T: 

01(y) 0. 
Following the proof of Theorem 2.3, let Tj be the half-open annulus with center 1 

and radius j defined by 
Tj= U Q(k). 

k eZs 
Ilk-111=j 

Note that 1j < IlY - xill < 2j for every xi E X(n) n Tj, while IIY - xill > * for 
every xi E X(n). By virtue of (A2), we get a lower bound on card(X(n) n Tj). For 
there are positive integers N0, jo and A(N) > max(N/No, jo) (each of them 
independent of y) such that the number of half-open cubes Q(k) with Ilk - 1 l = j 
contained in N * K(y) C AN is bounded below by [ j/jo ] s for every jo < j < j(N), 
N > No. Thus, by the definition of m, 

card(X(n) n Tj) > m [j/Ijo ]1 for j0 < j < j(N), N > No 

where j (N) > max( N/No , jo). 

Hence 
j(N) 

(3.9) 02 (Y) > cm E js-p+q 
11-jo 
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and, obviously, 

(3.10) p( al(y) + 4q+ 1o2 (y) 

Note that t/(a + bt) is strictly increasing in t > 0 (a, b > 0). 
Case 1 (p > s). If m > 0, insert (3.6) and (3.9) in (3.10) and cancel m. Then (3.4) 

implies that 

Ej(N) js-p+q 
( 3 .11 ) ~Sp ( y) > c 5N)p- s+EJ( )os- (3.11) ~C l/ P-s + F()--~ 

Case 1.1 (p - s > q + 1). Define N(n) = [nl/S]. Since Ejs-p+q is bounded, by 
(3.11), 

CpY > CNq+1 N e 
(c > c /s)q+l cNq + 1, 

Hence, (3.3) is proved if m # 0. Otherwise, (3.10) implies that sq(y) > 4-q-1 > 

cNq epq(r). 
Case 1.2 (p - s = q + 1). Define N(n) = [nl/s/logn] and note that asymptoti- 

cally 

logN - -log n, (log n)-q - Nq+1 gn 
S (n1/s )q?l 

and that 
j(N) 

E j s-p+ q > cllog j( N) > C21og N. 
=jo 

Thus (3.11) implies that 

p ) C1 (log n c2(log n )> c3N lep(r) 
s~'(y) (logn~)P-Sl + 1 

if m # 0. Otherwise, by (3.10), 

Spq(y) >_ 4-q-1 > c21g)-q > C3Nq+ leepqr 

Case 1.3 (p -s < q + 1). Note that 

j(N) 
J s-P+q > cNs-P+q+l 

1=jo 

hence, by (3.11), 
Nq+1 

Sp(y) ? .,_ 
c(W1/S)P-S + Nq+1 

Now define N(n) - [(nl/s)(p-s)/(q+l)] in order to get 

Spq(y) > CNq+l I ( 1/)q+-qe(r) 

if m # 0. Otherwise (3.10) yields the same result. 
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Case 2 (p = s). This time, 

j(N) 

E ]S-P+q>CNq+l* 
--jo 

If m > 0 insert (3.7) and (3.9) in (3.10) and cancel m. Then (3.4) implies that 

Nq+1 
sP(y) > C 

lo s 
1+log N Nq+ 

Define N(n) = [(log n)l/(q+ 1)] such that 

al/S 1 
log N ~ -log n. 

Hence, 

Nq+1 
SPq(y) > c. > c I =cq+lcqr) 

_C> C;7 log n =N 
P() 

the same result being true if m = 0. 
Case 3 (p < s). Insert (3.8) and (3.9) in (3.10) to get 

Fj(N) js-p+q 

5p~y) >2c 1 + Ej(N) s-p+q 

if m # 0 and N is sufficiently large. If m = 0, sP,(y)> c as well. Thus, in this case, 
the function N(n) is defined as a constant N1 sufficiently large, and we get (3.1) and 

(3.2) (c > 0): 

Y gAL4 > CIgy Iq, PS'g- gY A > CWgy(1). E 

Remark 3.3. The estimate (3.1) is trivial if p - s > q + 1. Since p(A) > 0, there is 

a positive constant c such that for all sets X(n) of n data points of A there is a 
point y E A with 

C 
IIY - xi > for allxi GE X(n). 

If vi(x) > 0, 2vi- 1 and vi(x) = Sj, then the approximating power of the 
interpolating operator 

q 
n 

Sqf(x) = E E j-D~f(xi)(x-xi)'vi(x) 
i=1 lVI~q 

cannot exceed r'+ 1. For, if q > 1, 

||Sqg~q gq E| I Y _Xi lq lVi(X) > Cq+1 
I |g~q |qLq+1. 

Analogously, the estimate IIS~gy - gy1IA > cWg (r) shows that there exists no stable 
interpolation operator So in C?(A) whose approximating power is better than 
0(n-1/s) 

Example 3.4. Let A be the following two-dimensional compact domain which fails 
to satisfy the cone property (A2): 

A = {(x, y) E [0, 1]5; x < y2 
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For every N E N, consider the set X of data points 

X= ((xigyj) = (N A)E ; i~j = 091,..., N , 

thus r = 1/2N and M = 4. We note that if j < ANK, no data point except for 
(0, yj) lies on the straight line y = yj, and if j> 1/K, exactly [ I2/N] + 1 data points 
will do. Thus card X is asymptotic to -N2. Let f(x, y) = g(O q)(x, y) and apply 
Lemma (3.1) to get 

Njq+1-P + r _j_*q?3- 
|( Spqf- f )(0, r) I > cirq+l1E _j<rqtP+rgjNj+- 

E1<j<F~j-P + rEiN<j<Nj 

The preceding inequality holds with the direction reversed, if cl is replaced by a 
positive constant c2. If p = 2 and r -O 0, the denominator is bounded, while the 
numerator behaves like r-q-1. Thus Shepard's formula fails to converge like 
e-(r) = Ilogrl-1: 

11Sf - | c (r O- ). 
O 

Example 3.5. Let A be the unit interval [0, 11 c R1, and let (jn) be a sequence in N 
converging to + oo (n -x oo) such that 1 < jn < n and Mn = [IjP = 0(n). The set 
X will be defined as follows: xi = i/n for 1 < i < n, while all the data points xi for 
n < i < n + Mn are arbitrarily spaced in the open interval (xj, xj +1), thus r=1/2n 

and M = Mn + 2. Then Lemma 3.1 implies that (f = gq) 

j(S~f-f )(y)j I ? i 
2(1/r)p + E3n+ X -Xi 

) o a+l i= i+ l-uP + M yq+ l -p 

yin 3i-+ M j-P 

Case 1.1 (p - 1 > q + 1). Since Ei-P and Eiq+1-P are bounded, we get 

IISIp'f-fIIA > Cl flqsl~)M (q) (r 1- 0,n -+ oo). 

Case 1.2 (p - 1 = q + 1). D-P is bounded, while Eiq+l-P diverges like logn. 
Choosing (]n) such that 

M(q+ 1)/p 
-* + if n oo, 

log n 

we get 

M(q+ 1)/p 

||Sqf-~l> C f lq~leq(r) - Iog r n o). 

In both cases Shepard's formula fails to converge like Eq(r), thus showing that the 
factor M in (2.5) and (2.7) is inevitable. 0 
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Remark 3.6. If f(x, y) = yq+1 in Example 3.3 and f(x) = xq I1 in Example 3.4, 
we get the same estimates as before. Essentially, this works because each term except 
the first in the numerator of Sqf - f, evaluated in (0, r) (Example 3.3) or in r 
(Example 3.4), has the same sign. This argument shows that the results of Theorem 
2.3 cannot be improved for functions of higher differentiability, not even for 
polynomials. 
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