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Rate of Convergence of
Shepard’s Global Interpolation Formula

By Reinhard Farwig

Abstract. Given any data points x;,..., x, in R® and values f(x,),..., f(x,) of a function f,
Shepard’s global interpolation formula reads as follows:

Sff(x) = Zf(x,-)w,»(x), wi(x)=|x - xil_p/ZIx - le.p,
i J

where | - | denotes the Euclidean norm in R°. This interpolation scheme is stable, but if p > 1,
the gradient of the interpolating function vanishes in all data points. The interpolation
operator S is defined by replacing the values f(x;) in Sff by Taylor polynomials of f of
degree g € N. In this paper, we investigate the approximating power of S for all values of p,
q and s.

1. Introduction. In [12] D. Shepard introduced an interpolation scheme which is
easily programmable and whose interpolating function can be written down ex-
plicitly. Given any arbitrarily spaced points x;,...,x, € R® and values
f(x1),-.., f(x,) of a function f, the first version of Shepard’s interpolation formula
is given by

S%(x) = ¥ f(x)w(x)

i=1
with basis functions
- x|
w(x)= ———————
(%) z |x —x|” I

Here p > 0, and | - | may denote any norm in R’, but for reasons of differentiability
it is natural to use the Euclidean norm. The basis functions are not differentiable at
the data points if p < 1; otherwise, at least the first derivatives vanish. Generally,
the parameter p is chosen to equal 2 so that, in addition, the basis functions are
rational and infinitely differentiable. For a qualitative discussion of the parameter p,
see Barnhill, Dube and Little [3], Gordon and Wixom [5], Lancaster and Salkauskas
[7] and Poeppelmeier [10]. Since

w(x;)=8; w(x)>0 and Z wi(x)=1,

the linear interpolation operator S° is stable in the sense that

min /() < SY(x) < max (x,).
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578 REINHARD FARWIG

D. J. Newman and T. J. Rivlin [9] show that, if p = 2, then S,? is optimal in a
certain sense among all ‘universally’ stable rational interpolation schemes. But the
approximating power of a stable interpolation operator cannot exceed n~!/%, as is
shown in Section 3.

If p > 1, the interpolating function Sl?f has flat spots in the neighborhood of all
data points. This drawback can be avoided by using Taylor polynomials of f of
degree q instead of the values f(x,),..., f(x,), if all partial derivatives D*f(x;) of f
up to degree ¢, or approximations to them, are known:

n
()= T oD (x)(x = %) w(x),
i=1 |v|l<qg
where v = (v,..., »,) denotes a multi-index and |[»| =», + --- +v. If g > 1, §] is
no longer stable, but SJf will approximate f (and its derivatives) much better than
S,? 'f does. Generalizations of Shepard’s global interpolation formula are described by
Barnhill [2], McLain [6}, Little [8], Schumaker [11] and in [3], [7] and [10].

In applications, the global character of Shepard’s interpolation formula is often
undesirable. Further, the evaluation of Sjf(x) requires a considerable amount of
work. These disadvantages are avoided by using local versions of Shepard’s formula.
There the basic functions have ‘small’ compact support which may even depend on
the local distribution of data points (see [2}, [11] and [12]). Bash-Ayan [1] and
Franke [4] tested Shepard’s global formula and several local versions and compared
them to other multivariate interpolation schemes.

If the n data points are distributed in a homogeneous way throughout a given
domain, and if n — oo, then SJf will converge to the given function f. In [9], the
rate of convergence of S? is given in the univariate case. In this paper, we investigate
the approximating power of S/ for all p and g and in every dimension s. Section 2
shows that p — s =g+ lor p — s > g + 1is a good choice of the parameter p if ¢
is given. In Section 3, we prove (cf. [9], if s = 1, ¢ = 0, p = 2) that the results of our
main theorem, Theorem 2.3, cannot be improved for any set of data points.

2. Approximating Power of Shepard’s Global Interpolation Formula. In the s-
dimensional space R* let | - | denote the Euclidean norm, || - || the maximum norm,
and let B,(y) denote the closed cube {x € R’; ||x — y|| < r} with center y and
radius r. We use standard multi-index notation. In particular, given any multi-index
v = (vy,...,7,) € N’ |v| denotes the sum », + --- +», and not the Euclidean norm
of the vector ».

Let f be a function sufficiently smooth in a domain 4 of R°® such that the
function values f(x;) and all partial derivatives D"f(x;) up to some order g € N
(7] < q) are known in n pairwise distinct data points x,,..., x,. Then, if p > 0,
Shepard’s interpolation operator S is defined as

(2.1) () =% T 2D (x)(x = x)wi(x)
i=1 v|<q 7

with the ith basis function

|x = x, |77 [T . ilx — x,l?

fmllX = x;|7F - LTl jlx = xl?”

(2.2) wi(x) =
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Note that

n

wi(xj) =34, wi(x)=0, Y wi(x)=1,
i=1
and that w,(x) is infinitely differentiable in R® except in the data points where all
partial derivatives up to order p — 1 (p € N) or [p] (p & N) exist and vanish.
Thus, if ¢ < p — 1 or g <[p], the interpolating function Sjf is at least g-times
continuously differentiable and

DVS:f(xi)=D"f(xi) (|V|< q,i=1,...,n).
Assume that the domain A is compact and satisfies two conditions of regularity:

There is a number y > 1 such that any two points x and y in
(A1) A are joined by a rectifiable curve I' in 4 with length
Il < vlx =yl
There is a compact cone K such that for every x € A there is
a cone K(x) C A with vertex x and congruent with K.

Note that the cone K may be defined as K = {Ay; y € B (z), A > 0} N B,(0)
(r, >0, r,>0,0 ¢ B,(z)) and that the number y in (Al) may be assumed to be an
integer. The condition (A1) implies connectedness and excludes domains with too
thin cusps directed into the interior A of A, while the cone property (A2) does not
admit domains with too thin cusps directed outwards and guarantees that the closure
of A equals A.

Next, we discuss some consequences of the condition (Al). According to H.
Whitney [13], a function f: 4 — R is said to be of class C? in A if and only if
functions D*f(x) and R,(x;y) (|v| < q) exist in A4 such that Taylor’s formula holds
in the following sense (x, y € 4, |v| < q)

ey DW= T O)x =) R )
pl<q=lrl T

(A2)

The remainder terms R,(x; y) shall have the following property: Given any point
z € A and any ¢ > 0O thereis a 8 > 0 such that

(2.4) |R,(x;y)|<¢lx —y"™ foreveryx, ye 4, |x—z|<8,|y—z|<8.
(2.3) and (2.4) imply that f is continuous in A4 and, if g > 1, that f has continuous

partial derivatives up to order q in the interior of 4 satisfying

o"f(x
D”f(x)=5%, lv|< q, x € A.

A function f is said to be of class C?! in A if and only if f is of class C? in 4 and,
additionally, the partial derivatives D*f of f of order g (|v| = q) are Lipschitz-con-
tinuous in A. In this case, the seminorm | - |, is defined as

|D*f(x,) = D*f(x,)1.

T 5 X1, xZEA,xl¢x2,|v|=q}.

|f|q,l = SUP{

The results of H. Whitney [13] yield important estimates of the remainder terms
R, (x;9)
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LEMMA 2.1. Let A satisfy (A1) and let f be of class C%' in A. Then, for every x,
y €4,

q-vl+1

IRv('x9y) | < cq—|v|yq_|Vle - yl lf'q'l’

where c, = s¥?/(p — D(p>0)orc,=1(p=0).
If f is assumed to be only continuous in A4, we will use its modulus of continuity
W
o (8) = sup(lf(x) = f(»)|; x, y€ 4, |x - y|< 8}.

LEMMA 2.2. Let A satisfy (Al), and let f € C°(A). Then, for arbitrary positive
numbers 0 < ¢ < 8,

)
w(8) < ZY;wI(e).

Proof. Let m be the integer defined by me < 8§ < (m + 1)e. Then, it is sufficient
to prove that w,((m + 1)¢) < y(m + 1)w () because m + 1 < 25/e. Let x, y € 4
with |x — y| < (m + 1)e and let T be a rectifiable curve in 4 joining x and y with
length |T| < y|x — y|. Parameterizing T by x(s) € C°[0, ||}, where s denotes the
length of the part of I' between x and x(s), we partition the interval [0, |I'[] into
y(m + 1) consecutive parts [s;_,, s;] of length |s, — 5,_,| < 8. Noting that x = x(0)
and y = x(|I|), we get

y(m+1)

7(x) = f)l< X 17(x(s) = f(x(si-)) [ < v(m + Dy (8). O

i=1
Let X be a set of n pairwise distinct data points x,, ..., x, in 4. We set
r = inf { p > 0; for every x € A, B,(x) contains at least one element of X }
and
M = sup card(B,(y) N X).
y

Analogously to the half-open unit interval (0, 1], the half-open unit cube in R® is
defined as (0, 1}°. Multiplying by 2r and shifting, we get the half-open cube Q,(x)
with center x and radius r (with respect to the maximum norm). The finiteness of X
implies for every x € A that B,(x) and Q,(x), if additionally Q,(x) C A, contain at
least one element of X. Our main theorem, Theorem 2.3, yields an estimate of
1S7f — fll 4» the supremum of SJf — f in 4.

THEOREM 2.3. Let the compact domain A satisfy condition (Al) and, if p = s, also
(A2) andlet X = {x,,...,x,)} be a set of n data points. If f is of class C?* in A, then

(2.5) IS%f - £, < CY™M|flqae8(r),

where

-1
llogr| p=s,
p-s _
(2.6) e(n={"" ps<qtlp>s,
rP=s|logr|, p—s=q+1,
ra*t p—s>q+1,
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and C is a positive constant independent of f, y and X. If f € C°(A), then
(2.7) ”S,?f— f"A < C*{wa(sg(r)).
Proof. Define

Zioillx — x|t 7?

(28) A i S -

If f € C°(A), then by Lemma 2.2 (&(r) = e3(r))
(Sr=-1) D)< L alel)w(x)+ X [f(x)=f(x)w(x)

1 1]
Ix—x,|<e(r) x— x> e(r)

<o (elr(1+ 25 Tlx = ()|

< w,(e(r))y(l + S(Cr)sg(x)).

If f € C%!(A), then by (2.3) and Lemma 2.1,
(83 = £)(x)] < ZIRo (x5 x,) wi(x) < ey f lqasg{x).

Thus, it remains to be shown that for fixed x € 4, x # x, (1 < i < n),
(2.9) s3(x) < MCei(r)
with a positive constant C independent of x and X.
In order to prove (2.9) we need a disjoint covering of A by half-open cubes. Let
T, = T, ,(x) be the half-open annulus with center x and radius 2rj defined by

T.= U 0.(x+2rk).

keZ’
Ikl =

Note that T, = Q,(x) and that

N

Ac U T, with N=[M]+1,
=0 2r
where d(A) > 0 denotes the diameter sup{||y — z|; y,z € A} of A. Evidently, the
number of half-open cubes Q,(-) contained in 7, lies between 2s(2) — 1)*~! and
252 + 1)1, thus
card(X N T, (x)) < 2sM(2j + 1) (1<j<N).
Further, note that
2j-Dr<lx-xll<(@j+1)r foreveryx,€ XN T, (x).

If (A2) is satisfied, we get a lower bound on card(X N T}). For there are a positive
number r, and positive integers j, and j, > max(r,/r, j,) (each of them indepen-
dent of x) such that the number of half-open cubes Q,(x + 2rk) with ||k|| =/
contained in 4 N K(x) is bounded below by [ j/j,]° ! for every j, <j <Ji, r < Io.
Thus,

151
card( X N E',(x)) > [ji] forevery jo<j<j,r<r
0

r,
where j, > max(TO, jo).
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Note that, if 4 is not empty and if M is bounded as n — oo, r — 0, then
n = card X is of exact order r~°. Defining the point x; € X by

I = x| = min x = x,I,

we get

N
' +1- +1-—
s3(x) <llx = x| ( Elx=xl™7"+E X lx-xI"""

x, €Ty Jj=1 x;€T;

(2.10)

N
< Mr"“(l +CY j“”*").
j=1
Casel (p >s). Ifeitherp—s>qg+lorp—s=q+1lorp—s<gq+1,then
Y j*7P*9 is either bounded or diverges with O(log N) = O(|log r|) or diverges with
O(N*7P*a+1y = O(rP~57971). Thus (2.10) yields (2.9).
Case 2 (p = s5). In this case we must examine the denominator of s7(x) more
carefully. Since £//1/j = O(log j,) = O(|logr]),

S T lx-xl”> L fx-xl"+ [ ] (@7 +Dr)?

j=0 x,€T, X €T,

-p
L -l + ;|nogr|.

x, €Ty
Using the inequality
Ya, a;
Zbi<23: (a;,>0,b,>0),
we get
+1 +1-
sfx)< X lx=-xI" + — Z Elx=x)""
x, €Ty | _/-l X €T;
<Mr"“(l+C2 E_] )
|logr| Jj=1

Finally, since
N
T j = O(N*) = 0(r~57),
j=1
this last estimate yields (2.9). O

THEOREM 2.4. Assume (Al) and let f be of class C9' in A, q> 1andp > s + 1.
Then, the first partial derivatives of Sjf converge to f uniformly in A as r — 0. More
precisely, if p denotes a multi-index with |p| = 1, then

q
|D*(S57 = )], < CY*M?1 £ o () :
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Proof. Given any x € 4,

DSEf(x) = DH(x)=E( £ D7 (x)(x - %) = DH(x) wi(x)

i \r|gg-1
_Z Ry(x;x;) D*w,(x)
= TR, (s (x) = £ Rol(xi) Do ).

Since

-p— -p—2
’ (x = x)"1x — x| 7 1 LG —x)lx—xl”
D Wi(x) =-P —p + P —p\2
Zjlx_le |x — x| (Ej|x—xj| )

Lemma 2.1 yields the estimate

|DA(S27 = 1)(x) | < Clf laav?(sg71(x) + 58(x)s;%(x)).
Here s, 2(x) is defined by (2.8) with ¢ = -2, and x # x, (1 < i < n). We also have
-p—1
sp—z(x) _ Zillx — xll -
Zillx = x|l
1

< M
% = x;,

N
1+¢G Y jr?
j=1

) MC,
/.
llx = x|
Looking at the proof of the estimate (2.9) (see (2.10)), we have
q -2 M2 Sg r )
si(x)s; 2 (x) < C -
Since for arbitrary values of p, s and ¢
&i(r)

si7Hx) < CMed™N(r) < M p

the theorem is proved. O

Remark 2.5. A similar result holds for higher derivatives: Given any multi-index p.
with |p| < gandp > s + ||,
e3(r)

il

|D(Sgf - £)], < CYM™| f|,a

Generally, the derivatives of f in the data points are not known. The next theorem
guarantees the same rate of convergence if all derivatives needed are approximated
to the right order.

COROLLARY 2.6. Assume (Al), let f be of class C?! in A and let d*f(x;) be
approximations to D*f(x,), |v| < q, x; € X, such that

d’f(x;) = D’f(x;) + O(r**17"),  |v|<q,r 0.
If §l;' denotes the interpolation operator

SYN) =L T S d(x)(x = x) w(x),

i |vi<q
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then
IS3r = £1l, = M- 0(eg(r)), r—o.
Proof. 1t suffices to consider S;f — .§“'f Now
(537 = $p)() | < €& T retMEflx — A (%)
vI<q
< Cl Z rq+l—|v|sl|,v|—1(x)_

Ivi<q
Since by the definition (2.8) s,'(x) = 1, let ¢,'(r) = 1, apply (2.9) and note that for
all [y < g, ra*1Mebl=i(r) = 0(e"(r)) O
Remark 2.7. Analogously to Remark 25,
|D*(857 = 1) |, = M™ - o(ei(r)/r™),  r—o0.

3. Negative Results. Theorem 2.3 gives no information if p <s. In this case
Shepard’s formula fails to converge in the sense that there is no function &7(r) such
that ¢7(r) — 0 as r — 0 and such that (2.5) holds. Theorem 3.2 deals with this case
and, further, shows that Theorem 2.3 cannot be improved. In the following we will
use the test functions

+1
gi(x) =lx=yI""  (g,=82)
some properties of which are listed in the next lemma.
LEMMA 3.1. The function gi is of class C% in R. If ¢q=0, then wgy(8)= é

(8 > 0). If g > 1, then all partial derivatives of g; exist at every point x # y, and up
to order q + 1 they are continuous and bounded functions in R°\ { y}. Further,

Hz = Dg(x)(y = x)" = (<) x = y|"".

Proof. Let us only prove the last identity for the case y = 0. Using polar
coordinates with r = r(x) = |x|, it is easily seen that forevery j =1,...,¢,

1 9/ _ 1 > 3/gd(x axil ax'}
———g(‘,’( - Z __0__)____ e —
J! ord j. e ax; ax; or or
1
=— —D’gd(x)x".
=)

Now insert this identity into Taylor’s formula for p(r) = r?*! = gé(x):

q
0=p(0) = ¥ pP()r) +(-n)*""
j=0J?

THEOREM 3.2. Let the compact domain A C [0, 1)° satisfy the cone property (A2), let
X(n) denote an arbitrary set of n pairwise distinct data points {x,,...,x,} in A and
let r = n~Y/%. Then, there is a positive constant ¢ dependent only on p, s, q and A with
the following property: given any set X(n) (n sufficiently large) there is a function g of
class C%! in A such that

(3.1) ISge — gll, > clglqaep(r).
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Here e](r) is defined by (2.6) if p > s and €}(r) = 1 if p < 5. Analogously, there is a
function g € C°(A) such that
(3.2) ”SpOg - g”A > cwg(sg(r)).

Proof. The function g will be the test function gj(x)=|x — y|9*L, where the
choice of the point y € A depends on the set X(n). Since |gj|,; is bounded
independently of y € 4, Lemma 3.1 implies that

Isses - 82l > IS2e2(») = Zly = x[" w(y)

> ai58(») > colgfl,.58(»)

with positive constants ¢, and c;. Analogously, for g, € C4),

uSJ?gy — & "A > esp(y) = C"’g,(sg(y))'
Thus, it suffices to show the existence of a positive constant ¢ such that for every set
X(n) (n sufficiently large) there is a point y € 4 \ X(n) satisfying the inequality

s3(y) > ced(r).

Let N(n) be an increasing function

N:N - N with N(n) > wasn - o,

which will be defined later. By virtue of the transformation x — N(n)x it remains
to show that

(3.3) s3(y) = NI 1ei(r),

where now y and the data points x,, ..., x,, range through the set 4y = N(n)4 C
[0, N(n)]’. If k € N¢, let Q(k) denote the half-open cube of radius 3 and center k
and note that

Ayc U 9(k).
keN*
O<|lk|I<N

Following the ideas of D. J. Newman and T. J. Rivlin [9] for the univariate case, we
construct a point y € 4, \ X(n) suitable for our purpose. Let

m = card(Q(/) N X(n)) = Q(I’gigAN card(Q(k) N X(n)).

Since the number of half-open cubes Q(k) C A, increases asymptotically like
p(Ay) = p(A)N*, as N - oo (p(A4) denotes the Lebesgue measure of A4 and is
positive because of (A2)),

(3.4) (N sufficiently large).

n
m<—————
n(4)N°
Assume m > 1, the trivial case m = 0 being considered later. Let
T={xe () lIx—Il<} lx = x> 4@m) ™ for every x, € X(n))
and note that

(3.9) w(T) > (1) - m(3@m)) =172+,
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In order to simplify the notation, define
-p +1-
()= X ly-xI" and o(»)= L ly-xI"""
x€Q() x €0
Casel (p > s). Since

-p
[anG) T lx-xl<mf o du(x)lx]
x;€Q(0) |x|>@2m)™'/ /4
—em[” drpsrt = (4(2m)l/s)p_s,
@m)14/4 p—s

¢ being a positive constant arising from the introduction of polar coordinates, (3.5)
guarantees the existence of a point y € T such that

(3.6) o,(y) <em?”s  (p>s).
Case 2 (p = s). Since |x — x,;| < Vs forevery x € T and x; € Q(I),

-p
[an() E -xlT<mf au()]x|
x€0() @m)V/a<|x|<F
=com ¢ dr < ¢,m(1 + logm).

emy e T

Thus, (3.5) yields the existence of a point y € T such that

(3.7) o,(y) <em(l +logm) (p=7s).
Case 3(p < ).

fdu(x) Y ox-x|" mclfﬁ drrs P! = mc,,

x€0(h)
thus there is a point y € T such that
(3.8) o,(y)<cem (p<s).

If m =0, the inequalities (3.6), (3.7) and (3.8) obviously hold for every y € T:
0,(») =0
Following the proof of Theorem 2.3, let 7; be the half-open annulus with center /
and radius j defined by
= U 0(k).

keZ’
Ile=2|=j

Note that 3j < ||y — x| < 2j for every x; € X(n) N T,, while ||y — x| > § for
every x; € X(n). By virtue of (A2), we get a lower bound on card(X(n) N T}). For
there are positive integers N,, j, and j(N)> max(N/N,, j,) (each of them
independent of y) such that the number of half-open cubes Q(k) with ||k — || =
contained in N - K(y) C A, is bounded below by [J/jols~! for every j, <j < j(N),
N > N,. Thus, by the definition of m,

card( X(n) N T;) = m[j/jo)’ ™" for jo<j <j(N), N> Ny
where j(N) > max(N/Ny, jo)-
Hence
J(N)
(3.9) o)(y) > em Y jTFHA,

J=Jo
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and, obviously,

0,(»)
o,(y) +47%0,(y)
Note that ¢/(a + bt) is strictly increasing in ¢ > 0 (a, b > 0).

Case 1 (p > s5). If m > 0, insert (3.6) and (3.9) in (3.10) and cancel m. Then (3.4)
implies that

(3.10) si(y) >

):f(lj) js—p+q
. q =L
(3.11) Sp(J’) =c (n/2/N)P~ + Z}S.N) js—p+q'

Jo

Case 1.1 (p — s > q + 1). Define N(n) = [n!/*]. Since Lj*"?*7 is bounded, by
G.11),

Nq+1

Sg(y)>C>C-(—n;s—)?f

= cN9*%ed(r).
Hence, (3.3) is proved if m # 0. Otherwise, (3.10) implies that sJ(y) > 4-971 >
eN9*1ed(r).

Case 1.2 (p — s = q¢ + 1). Define N(n) = [n'/*/logn] and note that asymptoti-
cally

1 -q _ nq+1__logn
log N slogn, (logn) N (/)1
and that
- V)
Y P> ¢log j(N) > c,log N.
J=Jo
Thus (3.11) implies that

1
(logn)? 7' +1
if m # 0. Otherwise, by (3.10),

s8(y) = 47971 > cy(logn) ™ > ;N9 ed(r).

S;’()') P! > c,(logn) ¥ > c3N"+lsg(r)

Case 1.3 (p — s < q + 1). Note that

J(N)
Z js—p+q> ch—p+q+1’
J=J
hence, by (3.11),
' q+1
53(9) > e

(nl/s)P°-" + N9+l .
Now define N(n) = [(n'/*)(?~9)/(a*D] in order to get

1
(n'/5)?~*

if m # 0. Otherwise (3.10) yields the same result.

si(y) = eN*! = cN*%ed(r)
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Case 2 (p = s). This time,
J(N)
Z js—p+q > ch+1'

J=Jo
If m > 0 insert (3.7) and (3.9) in (3.10) and cancel m. Then (3.4) implies that
Nq+ 1

si(y)>c al/s

1+ log

+ N9*1

Define N(n) = [(logn)}/9*D] such that

nl/s
log ¥

1
~ ;logn.

Hence,

Nq+1
logn

si(y)=c>

the same result being true if m = 0.
Case 3 (p < s). Insert (3.8) and (3.9) in (3.10) to get

E/(N)Js—pﬂl

59 > 22— 1L >c
F(y) > 20— Tl

= cN*1ed(r),

if m # 0 and N is sufficiently large. If m = 0, 57(y) > c as well. Thus, in this case,
the function N(n) is defined as a constant N, sufficiently large, and we get (3.1) and
3.2) (¢ > 0):

"ngy & ”A Z C|g,v|q 1 ”Sl?gy g,v"A Cw, (1) a

Remark 3.3. The estimate (3.1) is trivial if p — s > ¢ + 1. Since u(A4) > 0, there is
a positive constant ¢ such that for all sets X(n) of n data points of A there is a
point y € A with

ly — x|l = _f_/s for all x;, € X(n).
n .

If v;(x)>0, Zv,=1 and v,(x;) = §;;, then the approximating power of the
interpolating operator
S(x) = Z ) —D”f(x )(x = x;)"v;(x)
i=1 |v|<gq !

cannot exceed r9*!, For, if ¢ >
+1
Ises - &l > Zly = x| v(x) > et > o gg |
1

Analogously, the estimate ||S° g, — 8)ll4 = cw, (r) shows that there exists no stable
interpolation operator S° in C°(4) whose approx1mat1ng power is better than
o(n~1%).

Example 3.4. Let A be the following two-dimensional compact domain which fails
to satisfy the cone property (A2):

A4={(x,y)e[0,1]"; x < y?}.
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For every N € N, consider the set X of data points

X={(x,.,yj)=(N N)eAzj—Ol },

thus r = 1/2N and M = 4. We note that if j < VN, no data point except for
(0, y;) lies on the straight line y = y;, and if j > > VN, exactly [ j2/N] + 1 data points
will do. Thus card X is asymptotic to $N2. Let f(x, y) = g8, (x, y) and apply
Lemma (3.1) to get

Zl<j<\/17jq+l_p + "E\/ﬁq<qu+3_p
Licj<wi P+ rEw <N’

|(Sgf = £)(0,7)] > eyre*?

The preceding inequality holds with the direction reversed, if ¢, is replaced by a
positive constant c,. If p =2 and r — 0, the denominator is bounded, while the
numerator behaves like r~971. Thus Shepard’s formula fails to converge like

e§(r) = logr|™":
\sgr=1rlazec  (r=0). O

Example 3.5. Let A be the unit interval [0,1] C R!, and let (j,,) be a sequence in N
converging to + oo (n — o) such that 1 <j, <n and M, = [j?]= O(n). The set
X will be defined as follows: x; = i/n for 1 < i < n, while all the data points x, for
n < i < n+ M, are arbitrarily spaced in the open interval (x; , x; .,), thus r = 1/2n
and M = M, + 2. Then Lemma 3.1 implies that (f = g7)

Tt My — x |77

21/r)" + T tx = x|

I(Sgf - £)(»)| =

n  :q+1-p q+1—p
im3 i + M, j?

> critl T
YraitP+ M, jF

Case1.1(p — 1> g+ 1). Since i ~? and Li?*! "7 are bounded, we get
157 = 71, > el flaaeg ()M (r > 0,n > o).

Case 1.2 (p — 1 =g+ 1). Zi? is bounded, while Li?*'~7 diverges like logn.
Choosing ( j,) such that

Ma+D/p
W - +o00 ifn- oo,
we get
(9+1)/p
”Sqf f”,{ c’flqlep( ) logn (" - 0," - oo)

In both cases Shepard’s formula fails to converge like ¢7(r), thus showing that the
factor M in (2.5) and (2.7) is inevitable. O
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Remark 3.6. If f(x,y)=y?*! in Example 3.3 and f(x) = x9*! in Example 3.4,
we get the same estimates as before. Essentially, this works because each term except
the first in the numerator of SJf — f, evaluated in (0,r) (Example 3.3) or in r
(Example 3.4), has the same sign. This argument shows that the results of Theorem
2.3 cannot be improved for functions of higher differentiability, not even for
polynomials.
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